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Introduction

B
efore a project is started, project managers have to make an 
estimation of how long the project will take and how much it is going 
to cost. Traditionally, project managers focus on the specifics of the 
considered project (e.g., its particular activities) to produce these 

estimations, as they attempt to forecast uncertain events that would influence 
the future course of the project. Such an “inside view” forecasting approach 
is obviously based on human judgment. In their studies, Kahneman and 
Tversky (1979a, 1979b) found that human judgment is biased, as it is generally 
too optimistic because of overconfidence and insufficient regard to actual 
previous experience (i.e., “optimism bias”). Moreover, project managers 
could deliberately and strategically underestimate costs (and durations) to 
give the impression that they would surpass the competition (i.e., “strategic 
misinterpretation”). In order to overcome this human bias and the inaccurate 
forecasts that result from it, Kahneman and Tversky (1979a) and later Lovallo 
and Kahneman (2003) introduced the method of reference class forecasting 
(RCF). RCF takes an “outside view” on planned actions rather than an 
inside view by cutting directly to outcomes through the use of distributional 
information from other projects similar to the one being forecasted. More 
specifically, the RCF method consists of a three-step procedure (Flyvbjerg, 
2006, 2007):

1.	 Identifying a relevant reference class of past projects similar to the 
considered project

2.	 Establishing a probability distribution for the selected reference class
3.	 Determining the most likely outcome for the considered project by 

comparing that project with the reference class distribution

Regarding the first step, Flyvbjerg (2006) states that the reference class must 
be broad enough to be meaningful, but narrow enough to be truly comparable 
with the considered project. We will approach this statement from a quanti-
tative point of view by identifying reference classes with different degrees of 
similarity and evaluating their performance, which has not been done in earlier 
studies.

Notice that the RCF method, as described by the three-step proce-
dure, does not involve any attempt to forecast specific events that would 
affect the particular project. Multiple experimental studies (Kahneman, 
1994; Kahneman & Tversky, 1979a, 1979b; Lovallo & Kahneman, 2003) 
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•	 Identify other realistic causes for 
biased forecasts that occur in practice, 
different from the traditional defini-
tions of optimism bias and strategic 
misinterpretation; and

•	 Further support the practical relevance 
of the RCF technique for real-life 
applications.

Regarding the first objective, the 
forecasts used for comparison are those 
from EVM, Monte Carlo simulation, and 
baseline estimates. Note that the two 
latter forecasts have not been explicitly 
considered in the study of Batselier and 
Vanhoucke (2015b). In order to achieve 
the last two objectives, we base our 
study on a real-life construction project 
that originates from the empirical proj-
ect database of Batselier and Vanhoucke 
(2015a). Furthermore, all projects of the 
different reference classes are also part 
of this database. Given the extent of 
the employed data, it is not our goal to 
pursue generalizability. Rather, we aim 
at providing a clear view of the practical 
application of different project forecast-
ing methods—in particular, RCF—and 
obtaining a reliable indication of the 
relevance of RCF in terms of workability 
and performance with respect to the 
traditional forecasting methods.

More information about the con-
sidered project and the real-life project 
database is provided in the next section, 
followed by the presentation of the dif-
ferent project forecasting methods con-
sidered in this article. In a subsequent 
section, the results of these methods 
are compared and discussed. Conclu-
sively, the most important outcomes of 
our study are summarized and sugges-
tions for future research are made.

Methodology
We will start this section with the pre-
sentation of the real-life construction 
project that forms the basis for the cur-
rent study. Then the empirical database 
from which the considered project orig-
inates is described. Moreover, the refer-
ence classes that are selected in this 
study all consist of projects that are part 

and PD represent the baseline schedule 
(BLS) of the project (i.e., the planned 
course of the project) and are, there-
fore, collectively termed baseline esti-
mates here. The baseline estimates are 
used as inputs for the earned value man-
agement (EVM) methodology. EVM is a 
widely accepted technique for perform-
ing project control that integrates the 
three critical project management ele-
ments of cost, schedule, and scope. The 
technique also implicitly incorporates 
the quality aspect by taking into account 
project progress (Willems & Vanhoucke, 
2015). Through the application of EVM, 
the project manager can monitor the 
performance of the project during exe-
cution and receive warning signals for 
taking corrective actions needed to get 
the project back on track. Furthermore, 
the EVM technique can also be used 
to produce project forecasts. However, 
because EVM is a technique for perform-
ing project control, the forecasts are pro-
duced at different tracking periods (TPs) 
(i.e., evaluation moments) during the 
project’s progress. RCF-based forecasts, 
on the other hand, are made before the 
project starts. Nevertheless, the pre-
project forecasts from RCF and the inter-
mediately revised forecasts from EVM 
will be compared. In this light, RCF is seen 
as a technique for obtaining constant— 
and, therefore, stable—project forecasts, 
like the method proposed by Warburton 
(2011). The results of the RCF method 
will also be compared with the forecasts 
obtained from a pre-project Monte Carlo 
(MC) simulation, the specifics of which 
will be presented in the next section.

To provide a clear overview of the con-
tributions of this article, we now explicitly 
summarize the intended objectives:

•	 Perform a quantitative evaluation of 
the RCF technique by comparing it 
with the most common traditional 
project forecasting methods;

•	 Apply RCF for project duration forecast-
ing and evaluating the performance;

•	 Assess the influence of different selec-
tions of reference classes with respect 
to similarity levels;

have indicated that RCF is more accu-
rate than traditional forecasting meth-
ods. However, these studies were not 
situated in the field of project manage-
ment. The first and only instance of RCF 
in project management was presented 
by Flyvbjerg (2006), who considered 
a project in the transportation sector, 
though no quantitative evaluation of the 
accuracy of the RCF technique was per-
formed. Therefore, this article will com-
pare the performance of RCF with that 
of the most common traditional meth-
ods for project forecasting. Moreover, 
this performance evaluation is not based 
solely on the most important forecasting 
quality criterion, accuracy (Carbone & 
Armstrong, 1982), but also on the two 
other criteria—timeliness and stability 
(Covach, Haydon, & Reither, 1981)—the 
latter not being considered by Batselier 
and Vanhoucke (2015b). Furthermore, 
and in contrast to Flyvbjerg’s (2006) 
study, RCF will not only be applied for 
forecasting project cost but also for proj-
ect duration. As might appear from the 
above discussion, the focus of this article 
is on the time and cost aspects of project 
management. Although these are per-
haps the two most important objectives 
for the project manager, other factors 
such as safety, sustainability, and espe-
cially quality are also of interest. How-
ever, it is outside the scope of this article 
to further elaborate on the latter factors. 
An overview of studies that incorporate 
quality, safety, and/or sustainability in 
the traditional time–cost project control 
framework is provided by Willems and 
Vanhoucke (2015). Nevertheless, the 
expansion of control models through 
the integration of other performance-
defining factors, in addition to time and 
cost, remains a research path that should 
receive more attention in the future.

RCF produces forecasts prior to the 
project start. This corresponds to the 
budget at completion (BAC) and planned 
duration (PD) that reflect the final cost 
and duration of the project, respectively, 
estimated by the project managers based 
on their expectations of the future course 
of the project (i.e., inside view). The BAC 
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of the said database. After the selec-
tion of the different reference classes, 
the RCF method will be applied. Sub-
sequently, we present the traditional 
project forecasting approaches that are 
considered for comparison: first, those 
that produce pre-project forecasts, and 
then those that yield forecasts during 
project execution. More concretely, the 
consecutive subsections will be about 
baseline estimates, Monte Carlo simu-
lation, and EVM, respectively. For each 
forecasting method, both cost and time 
forecasting are considered.

Project Description

The study in this article is based on 
a real-life construction project. More 
specifically, it concerns the execution 
of the finishing works inside an office 
building, comprising the interior join-
ery and the placement of plaster walls, 
movable partition walls (also acoustic), 
raised floors, suspended ceilings, and 
furniture. The works are performed by 
a medium-sized finishing construction 
company with extensive experience 
in the field. Nevertheless, the consid-
ered project comprises a few smaller 
activities that are rather uncommon for 
the company, such as the placement 
of carpets and special glass walls. The 
complete list of activities, together with 
their planned costs and durations (i.e., 
the BLS), is shown in Table 1. Note that 
the last column of this table contains 
information that will be considered and 
discussed later in this article.

The outwardly irregular activity IDs 
(identification numbers) were chosen 
by the project manager who was respon-
sible for this project and are therefore 
retained here. Durations are expressed 
in standard eight-hour working days. 
The displayed costs and durations rep-
resent the pre-project expectations of 
the project manager.

The precedence relations between 
the activities—which express techni-
cal constraints—are also displayed in 
Table 1. When there are no parentheses 
behind the listed activity IDs, the pre-
cedence relation is a finish-start (FS) 

ID Activity Name Predecessors Successors
Cost 
[€]

Duration 
[d]

Distr 
Prof

1 Fixed ceilings 4(SS);6(SS);17 2,129 89 symm

2 Metal ceilings 4(SS);6(SS);17 19,509 89 symm

4 Movable partition 
walls (1)

1(SS);2(SS) 37,641 151 right

6 Plaster walls 1(SS);2(SS) 9(FF);10 36,184 22 left

9 Full subcontracting (1) 6(FF) 1,079 1 no risk

10 Disassembling ceilings 6 12 2,509 7 symm

12 Adjusting raised floor 10 11;21;3 1,800 3 symm

11 Placing carpet 12 13 27,162 5 symm

21 Full subcontracting (2) 12 20,068 67 no risk

13 Placing furniture 11 14;16 36,023 3 symm

14 Placing glass walls 13 17 180 1 symm

3 Acoustic dams 12 20;5;7;8 1,674 2 left

20 Movable partition 
walls (2)

3 17;15;22 4,926 9 right

5 Movable partition 
walls (3)

3 17;15;22 619 9 right

7 Doors 3 17;15;22 6,259 3 symm

8 Joinery 3 17;15;22 1,964 3 symm

17 Painting works 1;2;14;20;5;7;8 19(SS) 8,538 41 symm

19 Ancillary works 17(SS) 16,619 3 symm

15 Finishings 20;5;7;8 18(SS) 13,132 71 symm

22 Miscellaneous 20;5;7;8 998 77 right

16 Adjusting furniture 13 312 61 symm

18 Moving reinforcing 
screens

15(SS) 4,879 3 symm

23 Additional work 0 0 no risk

Table 1: Activity information for the considered real-life construction project.

relation. An FS relation is the most com-
mon type of precedence relation and 
indicates that an activity can only start 
after its predecessor(s) has (have) fin-
ished. Start-start (SS) and finish-finish 
(FF) relations, on the other hand, signify 
that an activity can only start after its 
predecessor(s) has (have) started and 
that an activity can only finish after 
its predecessor(s) has (have) finished, 
respectively. The precedence relations 
between the activities can also be iden-
tified from the Gantt chart in Figure 1.

Notice that, although all prece-
dence relations have a zero time lag, the 

activities almost never directly follow 
one another in the BLS. This indicates 
that the project manager has incorpo-
rated buffers for activity durations in the 
project planning.

More extensive data on the con-
sidered project can be found at www 
.or-as.be/research/database, because 
the project is part of the real-life project 
database of Batselier and Vanhoucke 
(2015a). In this database, which will 
be described in the following section, 
the considered project is identified by 
the code C2013-17 and the name Office 
Finishing Works (5).

101278_PMJ_03_036-051.indd   38 9/7/16   10:26 PM



October/November 2016   ■   Project Management Journal    39

sector is very broad, consisting of the 
civil, industrial, and building subsec-
tors. The building construction subsec-
tor, in turn, can be further subdivided 
into commercial, institutional, and 
residential building. Because the con-
sidered project comprises the finishing 
works for an office building, it can be 
situated within the commercial building 
construction sector. Thus, three broader 
reference classes can be identified: 
projects from construction, building 
construction, and commercial build-
ing construction, in order of increasing 
specificity and similarity to the consid-
ered project. Projects from all of these 
(sub)sectors can be extracted from the 
database of Batselier and Vanhoucke 
(2015a). Logically, the broader the 
sector, the larger the number of rel-
evant projects; this is also illustrated in 
Table 2, which shows the project codes 
and names of the projects within the dif-
ferent reference classes. A number in a 
column indicates that the project in this 
study is part of the corresponding refer-
ence class (Constr is construction, Build 
is building construction, and Comm is 
commercial building construction) for 
cost and/or time forecasting (C-column 
and T-column, respectively). Observe 
that there are four projects that can be 

originate from the presented empirical 
database. How these different reference 
classes are composed is described in the 
next section.

Reference Class Selection

In order to apply the RCF technique, 
a reference class of projects similar to 
the considered project has to be iden-
tified. As mentioned in the introduc-
tion, it is our objective to assess the 
influence of the chosen reference class 
similarity level on the performance 
of RCF. To this end, we consider four 
different reference class composi-
tions, ranging from broad sector-based 
to company-specific. Notice that this 
approach somewhat resembles the 
k-nearest neighbors (k-NN) nonpara-
metric method, in which forecasts are 
based on the k projects closest (i.e., most 
similar) to the considered project. Paral-
leling our approach, the fixed number k 
would thus be decreased to reflect the 
increasing similarity level of the refer-
ence class. The explicit implementation 
of the k-NN method is beyond the scope 
of this article, but can be considered a 
potential future research topic.

Recall that the project considered 
in this study is a construction project. 
Note, however, that the construction 

Database Description

The real-life project database utilized in 
this article was constructed by Batselier 
and Vanhoucke (2015a). At the time of 
this study, the ever-expanding database 
consisted of 56 projects, which originate 
from many different companies from 
various sectors (mainly construction, 
but also event management, IT, produc-
tion, education, etc.) and show wide 
ranges of project budgets and dura-
tions. The quality and authenticity of 
the project data are guaranteed by the 
application of a construction and eval-
uation framework based on so-called 
project cards, which summarize the 
most important properties of a certain 
project and enable its categorization 
and evaluation (Batselier & Vanhoucke, 
2015a). The project card of the project 
considered here—and of every other 
project in the database—is available 
at www.or-as.be/research/database, as 
are the project data themselves. The 
data were originally formatted as files 
from the project management software 
tool ProTrack (www.protrack.be), but 
can now also be obtained in Microsoft 
Excel format, thanks to the novel soft-
ware tool PMConverter. Furthermore, 
all projects that constitute the refer-
ence classes for the considered project 

Figure 1: Gantt chart for the considered real-life construction project.
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In order to assess the influence 
of the reference class similarity level 
on the performance of the RCF tech-
nique, all four of the reference classes 
included in Table 2 will be considered. 
The resulting cost and time forecasts are 
presented in the following section.

Reference Class Forecasting

In terms of the three-step procedure for 
applying RCF presented in the introduc-
tion, we already performed the first step 
in the previous section (i.e., identify-
ing relevant reference classes of past, 

projects are available in the utilized 
database. All of them consist of activities 
that are strongly similar to those of the 
considered project, with the placement 
of the movable partition walls as the 
core activity. Moreover, the four projects 
were all completed in 2011, in the order 
indicated by the project codes (C2013-
13 to 16) and names (Office Finishing 
Works [1] to [4]). The considered proj-
ect C2013-17 Office Finishing Works (5) 
only started in May 2012, so the OFW 
reference class for this project is indeed 
constituted of past projects.

used in a reference class for time but 
not for cost forecasting. This is because 
authentic actual cost data for these proj-
ects are absent. The numbers displayed 
in Table 2 will be explained and utilized 
in the next section.

The last two columns of Table 2 pres-
ent the reference class “OFW” or “office 
finishing works.” This is the most specific 
reference class with the highest degree 
of similarity, as it only comprises the 
finishing construction projects executed 
by the same company as the one that 
did the considered project. Four of these 

Reference Class

Constr Build Comm OFW

Code Name C [%] T [%] C [%] T [%] C [%] T [%] C [%] T [%]
C2013-13 Office Finishing Works (1) 214.5 28.1 214.5 28.1 214.5 28.1 214.5 28.1

C2013-14 Office Finishing Works (2) 212.1 23.8 212.1 23.8 212.1 23.8 212.1 23.8

C2013-15 Office Finishing Works (3) 29.7 229.8 29.7 229.8 29.7 229.8 29.7 229.8

C2013-16 Office Finishing Works (4) 220.0 233.2 220.0 233.2 220.0 233.2 220.0 233.2

C2011-12 Claeys-Verhelst Premises — 2.7 — 2.7 — 2.7

C2013-09 Urban Development Project 10.4 23.7 10.4 23.7 10.4 23.7

C2013-03 Brussels Finance Tower 5.8 0.2 5.8 0.2

C2013-04 Kitchen Tower Anderlecht 18.9 36.0 18.9 36.0

C2013-06 Government Office Building 10.9 22.3 10.9 22.3

C2013-07 Family Residence 23.0 7.6 23.0 7.6

C2013-08 Timber House 15.1 8.8 15.1 8.8

C2013-12 Young Cattle Barn 7.5 63.5 7.5 63.5

C2014-01 Mixed-use Building 2.8 25.5 2.8 25.5

C2014-05 Apartment Building (1) — 20.2 — 20.2

C2014-06 Apartment Building (2) — 11.7 — 11.7

C2014-07 Apartment Building (3) — 14.4 — 14.4

C2014-08 Apartment Building (4) 19.5 18.0 19.5 18.0

C2011-13 Wind Farm 22.0 14.3

C2012-13 Pumping Station Jabbeke 4.2 12.0

C2013-01 Wiedauwkaai Fenders 22.9 0.0

C2013-02 Sewage Plant Hove 27.3 0.0

C2013-10 Town Square 33.2 20.1

C2013-11 Recreation Complex 20.5 211.4

C2014-04 Compressor Station Zelzate 5.0 62.5

Avg [%] 5.6 9.5 2.4 8.9 29.2 23.5 214.1 211.8

# projects 20 24 13 17 5 6 4 4

Table 2: Reference class selections and deviations between planned and actual outcomes.
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profiles for the individual activity dura-
tions. In this study, we apply triangular 
distribution profiles, which can be sym-
metrical, skewed to the left, or skewed to 
the right. These profiles have predefined 
shapes (see Figure 2), as also used in 
earlier research (Batselier & Vanhoucke, 
2015b). Furthermore, there is also the 
possibility that an activity exhibits no 
risk of its duration deviating from the 
expected value. The distribution profile 
in such a case is rather obvious (i.e., 
one single peak) and is therefore not 
included in Figure 2.

The worst case/best case duration of 
an activity is always 20% larger/smaller 
than its expected duration, regardless 
of the specific distribution profile (risk-
free profile disregarded). Moreover, the 
expected duration of an activity corre-
sponds to the 100% duration in Figure 2 
and represents the duration estimated 
by the project management prior to 
the project start. These expected (or 
planned) activity duration values were 
already presented in the second to last 
column of Table 1. Notice that, for an 
activity with a distribution profile that 
is skewed to the left, there is a greater 
chance that the activity will take longer 
than expected, whereas the opposite is 
true for an activity with a right skewed 
distribution profile. It is important to 
realize that the assignment of distribu-
tion profiles to the different activities of 
the considered project was performed 
by the project manager on the project 
based on his experiences from earlier 
projects that showed similar activities. 
Because historical data are used for this 
process, one would be inclined to regard 

US$323,059) and the PD 161 days. The 
BAC can quite easily be calculated as the 
sum of all the activity costs displayed in 
Table 1. The calculation of the PD, on 
the other hand, is not as straightfor-
ward, because the precedence relations 
between the different activities have to 
be respected. Only the activities that are 
part of the critical path (CP) define the 
PD. The critical activities of the consid-
ered project are indicated by a different 
shade of gray in Figure 1. In fact, only 
the very long activity 4 is intrinsically 
critical, but activities 17, 22, and 16 also 
become critical because of the as late 
as possible (ALAP) planning approach 
adopted by the project management 
in question. Also note that the start of 
activity 4 is only planned after 10 days, 
whereas there is no technical constraint 
(i.e., precedence relation) that would 
inhibit the activity from beginning at 
project launch. The choice for delaying 
the start of activity 4—and for introduc-
ing all other buffers in the project—was 
made by the project manager, perhaps 
taking into account the unavailability of 
a particular team or subcontractor until 
a certain date. Moreover, all activity 
costs and durations in Table 1 reflect the 
project manager’s pre-project expecta-
tions for the future course of the project. 
Therefore, the BAC and PD estimates 
are also completely pre-project.

Monte Carlo Simulation

An approach for obtaining somewhat 
more substantiated pre-project estimates 
of project cost and duration is to use 
Monte Carlo simulation, which is based 
on the definition of risk distribution 

similar projects). Therefore, we can now 
proceed to the second step. We will 
not explicitly consider the probability 
distributions for the selected refer-
ence classes as was done by Flyvbjerg 
(2006). In his research, the goal was to 
determine the required uplift (i.e., bud-
get increase with respect to the initial 
estimate or BAC) corresponding to a 
certain acceptable chance of cost over-
run. Because our intention is to com-
pare RCF with traditional forecasting 
approaches—which are all aimed at pro-
viding point estimates of the most likely 
project cost and duration—we are only 
interested in obtaining the most likely 
outcome for the considered project (i.e., 
similar to the uplift needed for the 50% 
percentile of the cost overrun chance in 
Flyvbjerg [2006]). This corresponds to 
the third step of the RCF procedure.

We now refer to Table 2, in which 
the numbers represent the observed 
deviations of the actual project cost 
(C-column) and duration (T-column) 
from their respective baseline estimates 
(see the next section). A negative per-
centage deviation indicates that the 
actual outcome turned out to be lower 
(i.e., more beneficial) than expected, 
whereas a positive number obviously 
signifies the opposite. The most likely 
cost or time outcome according to a 
certain reference class can be calcu-
lated from the average deviation over 
all projects in that reference class (see 
the second to last row of Table 2). More 
specifically, the desired RCF results are 
obtained by applying those average 
deviations to the baseline estimates, 
that is, to the BAC for cost forecast-
ing and to the PD for time forecasting. 
Table 3 shows all RCF outcomes for the 
considered project.

The values of the baseline estimates 
will be further discussed in the follow-
ing section.

Baseline Estimates

The baseline estimates for the consid-
ered project could already be observed 
from Table 3. More specifically, the BAC 
appeared to be €244,205 (approximately 

Reference Class

Constr Build Comm OFW

C [€] T [d] C [€] T [d] C [€] T [d] C [€] T [d]
Baseline 
estimate

244,205 161 244,205 161 244,205 161 244,205 161

Avg deviation 15.6% 19.5% 12.4% 18.9% 29.2% 23.5% 214.1% 211.8%

RCF outcome 257,771 176.4 250,141 175.4 221,787 155.4 209,833 142.0

Table 3: RCF outcomes for the considered project.
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because no additional work—or the risk 
of it—was taken into account in the ini-
tial plan. We also assume that the project 
only includes variable costs, which cor-
respond well to the actual situation, and 
that all activity costs thus vary uniformly 
with the corresponding activity duration.

The Monte Carlo simulation is per-
formed with the project management 
software tool ProTrack. More specifi-
cally, 100 simulation runs are executed. 
The project costs and durations resulting 
from these simulation runs are shown 
in Figure 3 and Figure 4, respectively. 
For both graphs, the value intervals 
were chosen in such a way that an equal 

these approaches are beyond the scope 
of this practice-oriented article.

The selected distribution profiles 
were already included in the last col-
umn of Table 1, labeled “Distr prof.” 
In this column, “symm,” “left,” “right,” 
and “no risk” indicate symmetrical, left 
skewed, right skewed, and risk-free dis-
tribution profiles, respectively. For the 
activities that were rather uncommon 
for the company (e.g., activities 10 to 12) 
and with which the project manager thus 
had little to no experience, a standard 
symmetrical distribution profile was 
assumed. Furthermore, activity 23 was 
assigned a risk-free distribution profile 

Monte Carlo simulation as an outside 
view forecasting technique. However, in 
contrast to RCF, Monte Carlo simulation 
still requires distributional information 
for every activity (and not only for the 
total project), which will often neces-
sitate (unsupported) assumptions from 
the project manager (e.g., for uncom-
mon activities). Therefore, Monte Carlo 
simulation could better be identified as a 
“semi-outside view” on project forecast-
ing. Note that the distribution profiles for 
activity durations could also be derived 
in a more analytical manner (Colin & 
Vanhoucke, 2016; Trietsch, Mazmanyan, 
Gevorgyan, & Baker, 2012). However, 

Figure 2: Activity duration distribution profiles.
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Earned Value Management

In contrast to the forecasting method-
ologies of RCF, baseline estimates and 
Monte Carlo simulation, EVM does not 
provide fixed pre-project predictions, 
but produces project cost and dura-
tion forecasts that are updated every 
TP based on the actual project prog-
ress. For the project considered here, 
tracking was performed on a monthly 
basis. For the first TP only, a larger 
time span of two months was chosen 
(because of the slow initial progress of 
the project). The final status date was 
on 31 October 2012, when the project 
had already ended. A total of four TPs 
occurred during the project’s execu-
tion (i.e., on the last day of June, July, 
August, and September 2012, respec-
tively). Nevertheless, although the first 
TP was postponed by one month, the 
progress made at that point was still not 
substantial enough to allow for correct 
calculation of project performance. To 
avoid the potential bias of EVM fore-
casting results, the data from the first 
TP were omitted. Consequently, only 
the next three TPs (i.e., from July 2012 
to September 2012) were considered 
for the calculation of EVM cost and 
duration forecasts. Before being able to 
present the EVM forecasting formulas, 

In contradiction to the project cost, 
only the critical activities (i.e., the activ-
ities on the critical path) define the 
total project duration. In the considered 
project, activities 4, 17, 22, and 16 are 
critical, as is indicated by the different 
shade in Figure 1. From Table 1, one can 
observe that activities 16 and 17 exhibit 
a symmetrical distribution profile, 
whereas the durations of activity 22 and 
the very significant (i.e., long) activity 4 
are skewed to the right. This explains 
the right skewed distribution of the 
simulated project duration that can be 
observed from Figure 4. In correspon-
dence with the cost situation, the PD—
which is 161 days for the considered 
project—reflects the expected duration 
(100 percentage points in Figure 2) on 
the project level. Furthermore, the peak 
of the third-degree polynomial of the 
simulated project duration distribution 
occurs around 142 days, which is about 
88% of the PD. This indeed corresponds 
nicely to the right skewed distribution 
profile as defined in Figure 2, where the 
peak is situated at 90%. More impor-
tant, the average project duration from 
Monte Carlo simulation, which will 
be the basis for further evaluation, is 
147 days. Logically, this value is consid-
erably lower (by 8.7%) than the PD.

and sufficient number (11) of outcome 
categories could be defined.

For project cost, all activities con-
tribute to the total cost value. Because 
the cost distribution over the different 
activities is very close to symmetrical 
(i.e., a strongly similar percentage of 
the distribution profiles is left skewed 
and right skewed—16% and 18%, 
respectively—while the rest of the pro-
files are symmetrical or risk-free), we 
also expect a rather symmetrical distri-
bution of the simulated project costs. 
The third-degree polynomial in Figure 3 
confirms this expectation. On a project 
level, the BAC represents the expected 
cost and thus corresponds to the 100% 
point in the distribution profiles of 
Figure 2. Recall that for the considered 
project, the BAC is €244,205 (approxi-
mately, US$323,059). On the other hand, 
the average project cost over the 100 
simulation runs is €242,432 (approxi-
mately, US$320,713). This is the Monte 
Carlo simulation outcome that will be 
retained for further evaluation. Notice 
that this result is modestly lower than 
the BAC (less than 1% difference), which 
can be explained by the slightly higher 
fraction of right skewed distribution pro-
files (i.e., greater chance of shorter activ-
ity duration and thus lower activity cost).

Figure 4: Project durations from MC simulation.
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to plan) and PF 5 SPI(t) (i.e., future 
time performance equal to current 
time performance). To clearly indicate 
the use of the ESM, these methods are 
represented by ESM-1 and ESM-SPI(t), 
respectively.

The relevant EVM metrics and all 
four of the applied cost and time fore-
casts are presented in Table 4 for all five 
TPs of the considered project. Recall that 
only the three middle TPs (i.e., TP2 to 
TP4) are retained for the upcoming eval-
uation. The results for TP1 and TP5 are 
also included in Table 4 for complete-
ness, but are shown in a lighter font.

Note that PC stands for percentage 
complete and is calculated by EV/BAC. 
The PC represents the progress that 
has already been made on a certain TP. 
From Table 4, we can see that the PC 
for TP1 was indeed still very low (i.e., 
8%) and does not reach the proposed 
minimum PC-value of 10% that war-
rants reliable performance calculation 
and thus forecasting (Lipke, 2009). Fur-
thermore, the results of TP5 are also not 
relevant for further evaluation, as this 
TP occurs after the project has ended. At 
that time, the actual project outcomes 
are, of course, already known and fore-
casting becomes redundant.

article, we only consider the PFs that 
were shown to provide the most accu-
rate cost forecasts for real-life projects 
(Batselier & Vanhoucke, 2015b), which 
are PF 5 1 (i.e., future cost perfor-
mance according to plan) and PF 5 
CPI (i.e., future cost performance equal 
to current cost performance). The cor-
responding methods are indicated by 
EAC-1 and EAC-CPI, respectively.

The EVM time forecasts are based 
on Lipke’s (2003) earned schedule 
method (ESM). The dominance of this 
technique over Anbari’s (2003) planned 
value method (PVM), and the earned 
duration method (EDM) of Jacob and 
Kane (2004) has been proven in several 
studies (Batselier & Vanhoucke, 2015b; 
Vanhoucke & Vandevoorde, 2007). There-
fore, the project duration forecast at the 
AT, termed estimated time at completion 
(EAC(t)), follows from the generic ESM 
formula:

EAC(t) 5 AT 1 
PD 2 ES

PF

Just as for cost forecasting, only the 
PFs with the best real-life performance 
according to Batselier and Vanhoucke 
(2015b) are retained. Those are PF 5 1 
(i.e., future time performance according 

we first need to provide a brief over-
view of the basic EVM metrics and their 
definitions:

•	 actual time (AT): the current point in 
time

•	 planned value (PV): the value that was 
planned to be earned at the AT

•	 earned value (EV): the value that has 
actually been earned at the AT

•	 actual cost (AC): the costs that have 
actually been incurred at the AT

•	 earned schedule (ES): the time at 
which the EV should have been earned 
according to the plan, calculated by 

ES 5 t 1 
EV 2 PVt

PVt11 2 PVt
 where t is the 

(integer) point in time for which EV $ 

PVt and EV , PVt11 (Lipke, 2003)
•	 cost performance index (CPI): CPI 5 

EV/AC; if the CPI is smaller than, equal 
to, or larger than 1, the project is 
respectively over, on, or under budget

•	 schedule performance index (SPI(t)): 
SPI(t) 5 ES/AT; if the SPI(t) is smaller 
than, equal to, or larger than 1, the 
project is respectively late, on time, or 
early

The above listing is certainly not 
comprehensive, as only the met-
rics that are needed for further cal-
culations are presented. For a more 
extensive overview of the EVM meth-
odology, there are multiple works avail-
able for consultation (Anbari, 2003; 
Fleming & Koppelman, 2010; PMI, 2008; 
Vanhoucke, 2010, 2014). In this article, 
the ES methodology proposed by Lipke 
(2003) is conceived as part of the global 
EVM technique. The EVM cost and 
duration forecasting formulas can now 
be introduced.

The project cost forecast at the AT is 
called the estimated cost at completion 
(EAC) and is calculated according to the 
following generic formula:

EAC 5 AC 1 
BAC 2 EV

PF

Here, PF is the performance fac-
tor that reflects the assumptions made 
for future project performance. In this 

TP1 TP2 TP3 TP4 TP5
Start date 05/01/2012 07/01/2012 08/01/2012 09/01/2012 10/01/2012

Status date 06/30/2012 07/31/2012 08/31/2012 09/30/2012 10/31/2012

PC [%] 8 61 91 98 100

AT [d] 44 66 89 109 132

PV [€] 58,946 77,311 169,890 184,870 226,159

EV [€] 19,535 148,261 222,988 238,834 244,205

AC [€] 27,993 139,833 175,006 202,523 203,606

ES [d] 18.0 79.3 131.6 151.1 161.0

CPI [-] 0.70 1.06 1.27 1.18 1.20

SPI(t) [-] 0.41 1.20 1.48 1.39 1.22

EAC-1 [€] 252,663 235,778 196,223 207,894 203,606

EAC-CPI [€] 349,933 230,324 191,658 207,077 203,606

ESM-1 [d] 187.0 147.6 118.4 118.8 132.0

ESM-SPI(t) [d] 393.5 133.9 108.9 116.0 132.0

Table 4: EVM metrics and forecasts for the considered project.
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planned, whereas the complete project 
finished 29 days early. Moreover, most 
of the predecessors of activity 17 were 
completed right on time. This means 
that the buffers introduced in the plan-
ning (see Figure 1) were reduced as well 
and appeared to be oversized. In other 
words, the start dates of the successor 
activities could be advanced, as no orga-
nizational constraints (e.g., unavailabil-
ity of a particular team or subcontractor 
until a certain date) occurred. Therefore, 
the project was executed even faster 
than what would result from shortening 
the activity durations alone. Because of 
the large fraction of variable costs in the 
project, the eventual cost is also reduced 
significantly, with a magnitude quite 
similar to the reduction in project dura-
tion (i.e., 16.6% compared with 18%).

Now reconsider Table 4. This table 
shows that it could already be seen from 
TP2 that the project was going to be 
both under budget and early, as both 
the CPI and the SPI(t) were consistently 
higher than 1. Again, it becomes clear 
that the progress data of TP1 were not 
yet reliable, as a CPI of 0.70 and SPI(t) 
of 0.41 incorrectly indicated that the 
project—when the performance-based 
EVM forecasting methods EAC-CPI and 
ESM-SPI(t) are applied—was going to 
be well over budget, and even more 
so, overdue. Furthermore, the RC and 
RD values could already be observed 
from the last column of Table 4 (i.e., the 
post-project forecasts of TP5). Because 
the RC and RD represent the actual 
project outcomes and, therefore, the 
optimal forecast values, they form the 
basis for evaluating the accuracy of 
the presented cost and time forecasting 
methods. More specifically, the mean 
absolute percentage error (MAPE) mea-
sure is used to this end. The generic 
MAPE formula is as follows:

MAPE 5 
1
n  

n

t1

 
A2 Ft

A

In this formula, A is the actual 
(eventual) value and Ft is the forecasted 
value at time instance t. In our case, 
the time instances t 5 1,...,n represent 

to as the real cost (RC) and real dura-
tion (RD) of the project, respectively. 
Thus, the project came in more than 
€40,000 (approximately, US$52,916) or 
16.6% under budget and was completed 
29 days or 18% earlier compared to the 
baseline estimates. Indeed, one can 
observe from Table 5 that all critical 
activities (i.e., activities 4, 17, 22, and 16) 
were completed significantly faster than 
planned—especially activity 4, which 
took only 22 days instead of 151 days, 
and activity 16, which even appeared to 
be superfluous (i.e., no adjustments to 
the furniture were needed). The critical 
activity for which the duration was least 
reduced is activity 17. Notice that this 
activity was only 19 days shorter than 

Results and Discussion
The considered project was executed 
and exhibited the real activity outcomes 
presented in the two last columns of 
Table 5. The baseline costs and dura-
tions (i.e., the as-planned values) in the 
second and third columns were already 
shown in Table 1, but are again included 
here to allow for easier comparison. 
Furthermore, the project totals for base-
line costs and durations are, of course, 
the BAC and PD, respectively.

On the project level, an even-
tual cost of €203,606 (approximately, 
US$269,350) and eventual duration of 
132 days were reached (see the two last 
columns of project total in Table 5). From 
now on, these outcomes are referred 

ID Activity Name
Baseline 
Cost [€]

Baseline 
Duration [d]

Real 
Cost [€]

Real 
Duration [d]

1 Fixed ceilings 2,129 89 1,929 22

2 Metal ceilings 19,509 89 20,190 62

4 Movable partition walls (1) 37,641 151 33,605 22

6 Plaster walls 36,184 22 34,103 81

9 Full subcontracting (1) 1,079 1 847 1

10 Disassembling ceilings 2,509 7 2,277 7

12 Adjusting raised floor 1,800 3 1,459 3

11 Placing carpet 27,162 5 21,457 5

21 Full subcontracting (2) 20,068 67 15,694 22

13 Placing furniture 36,023 3 29,191 3

14 Placing glass walls 180 1 178 1

3 Acoustic dams 1,674 2 1,520 2

20 Movable partition walls (2) 4,926 9 3,245 9

5 Movable partition walls (3) 619 9 615 9

7 Doors 6,259 3 5,529 3

8 Joinery 1,964 3 1,783 3

17 Painting works 8,538 41 6,185 22

19 Ancillary works 16,619 3 1,374 3

15 Finishings 13,132 71 11,920 65

22 Miscellaneous 998 77 906 22

16 Adjusting furniture 312 61 0 0

18 Moving reinforcing screens 4,879 3 905 3

23 Additional work 0 0 8,695 85

Project total 244,205 161 203,606 132

Table 5: Baseline and real activity costs and durations for the considered project.
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information from past experiences. This 
also indicates that complete and cor-
rect historical data—here, in the form of 
project manager experience—are crucial 
to the performance of Monte Carlo sim-
ulation. However, for Monte Carlo simu-
lation, one needs distributional data for 
each activity in the project, whereas for 
RCF, only the general outcomes of simi-
lar projects are required. The latter are 
obviously much easier to obtain, which 
is an advantage of the RCF technique.

Moreover, Table 6 even shows that 
RCF with the most specific reference 
class of projects from the same com-
pany (OFW) is the most accurate cost 
forecasting method of all those consid-
ered. It also becomes apparent that the 
RCF approach needs a reference class 
consisting of projects that are highly 
similar to the considered project, as 
forecasting accuracy clearly dimin-
ishes with decreasing similarity level 
(i.e., from OFW over Comm and Build 
to Constr). RCF with a reference class 
comprising all construction projects 
(Constr) from the database of Batselier 
and Vanhoucke (2015a) even proves to 
be the worst-performing method.

Because RCF with reference class 
OFW is the overall most accurate tech-
nique, it also surpasses both EVM cost 
forecasting methods (which show very 
similar results). This is remarkable, as 
the EVM methodology allows forecasts 
to be updated during project prog-
ress (based on actual progress data), 
whereas RCF only produces one fixed 
pre-project forecast that remains con-
stant throughout the entire project.

Because RCF yields constant fore-
casts, the approach logically exhibits 
greater forecasting stability than EVM. 
This is visualized by Figure 5. Since the 
horizontal line represents the eventual 
project cost (i.e., RC), the closeness 
of the markers to this line reflects the 
forecasting accuracy of the correspond-
ing methods (i.e., the closer, the more 
accurate).

In terms of timeliness (i.e., the third 
forecasting quality evaluation crite-
rion according to Covach, Haydon, and 

project considered in this article, as do 
the presented forecasting results.

Cost Forecasting
The accuracy results for the different 
cost forecasting methods are presented 
in Table 6. More specifically, the table 
shows the difference in MAPEs between 
the various techniques. A negative 
number indicates that the horizontal 
method (row) is more accurate than the 
vertical method (column), whereas a 
positive value obviously represents the 
opposite. All the abbreviations used in 
the table were already explained earlier 
in the text.

We will now discuss the results in 
the order the methods are displayed in 
Table 6. The BAC represents the pure 
inside view on project cost forecasting 
and is used as a first reference value. 
We see that Monte Carlo simulation 
yields a more accurate forecast than 
BAC, albeit modest. The reason that 
the improvement is only modest might 
be that symmetrical distribution pro-
files were assumed for the uncommon 
activities, whereas the most important 
of them (i.e., activities 17, 15, and 16) 
were executed faster—and thus, more 
cheaply—than planned. This means 
that right skewed distribution profiles 
would have been a better option for 
those activities, although symmetrical 
profiles were the more logical choice, 
given the unavailability of distributional 

the n TPs that were selected for the 
considered project. Furthermore, A is 
substituted by RC and RD for cost and 
time forecasting, respectively, and Ft 
reflects the forecasting outcomes of 
the different methods. Note, however, 
that the methodologies of RCF, baseline 
estimates and Monte Carlo simulation, 
all produce one fixed forecast prior to 
the project start that remains constant 
throughout the entire project. In other 
words, the forecasts Ft are the same for 
every TP t (i.e., Ft can be replaced by 
F). Nevertheless, the MAPE remains a 
valid accuracy measure in these situa-
tions, although its formula is implicitly 
simplified to |A 2 F|/A (i.e., an absolute 
percentage error). For the EVM fore-
casting methods, on the other hand, 
the original MAPE formula, of course, 
continues to apply, with n 5 3 and F1 
to F3 reflecting the forecasts for TP2 to 
TP4. It is always true that the lower the 
MAPE, the more accurate the forecast-
ing method.

In the next two subsections, the per-
formance of the considered forecast-
ing methods is evaluated—first for cost, 
and then for time. Thereafter, both fore-
casting dimensions are compared more 
elaborately. Finally, a qualitative discus-
sion on the underlying causes for the 
observed performance of the different 
forecasting approaches is conducted. 
Note that this discussion emanates from 
the specific outcomes of the construction 

RCF EVM

[MAPE %] BAC
MC 
Sim Constr Build Comm OFW EAC-1 EAC-CPI

BAC — 0.9 26.7 22.9 11.0 16.9 12.8 13.0

MC Sim 20.9 — 27.5 23.8 10.1 16.0 11.9 12.2

RCF

Constr 6.7 7.5 — 3.7 17.7 23.5 19.4 19.7

Build 2.9 3.8 23.7 — 13.9 19.8 15.7 16.0

Comm 211.0 210.1 217.7 213.9 — 5.9 1.8 2.0

OFW 216.9 216.0 223.5 219.8 25.9 — 24.1 23.8

EVM
EAC-1 212.8 211.9 219.4 215.7 21.8 4.1 — 0.3

EAC-CPI 213.0 212.2 219.7 216.0 22.0 3.8 20.3 —

Table 6: Difference in accuracy for the considered cost forecasting approaches.
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profiles for Monte Carlo simulation. 
Also note that these distribution profiles 
are implicitly based on historical data, 
as during the construction of these pro-
files, the concerning project manager is 
encouraged to take into account experi-
ences from past projects, which would 
improve forecasting accuracy according 
to Caron, Ruggeri, and Merli (2013). In 
other words, the application of Monte 
Carlo simulation already guides the 
project manager toward taking more 
of an outside view on project forecast-
ing. Nevertheless, the technique still 

be that two of the four critical activities 
have a right skewed distribution profile 
(the two others are symmetrical), which 
depicts activities that are more likely to 
be completed faster than planned. More-
over, these two activities—activity 22 
and especially activity 4—are the most 
important (i.e., longest) ones, and thus 
have the greatest influence on the even-
tual project duration. Both activities 
were indeed finished far ahead of sched-
ule, and therefore, so was the project. 
Again, this indicates the importance 
of correct activity duration distribution 

Reither [1981], which expresses the abil-
ity of a forecasting method to produce 
accurate forecasts in different stages of 
the project life cycle), RCF also clearly 
outperforms EVM. Logically, accurate 
early-stage forecasts are most impor-
tant, as they allow adequate corrective 
actions to be taken in a timely manner 
(Teicholz, 1993). Following the defini-
tions of Teicholz (1993) and Vanhoucke 
and Vandevoorde (2007), only TP1 (with 
a PC of 8%) can be situated in the 
early stage. For this TP, RCF indeed pro-
duces a much more accurate forecast 
than EAC-1 and certainly more accurate 
than EAC-CPI, which is off the charts in 
Figure 5 (see the value in Table 4).

Time Forecasting
Table 7 is very similar to Table 6 in the 
previous subsection, but now shows the 
accuracy differences for the considered 
time forecasting methods.

Again, the outcomes are discussed 
in the order the methods are presented 
in the table. When we once again apply 
the baseline estimate—here, the PD—as 
a first reference value, we see that Monte 
Carlo simulation now provides a much 
greater accuracy improvement than it 
does for cost forecasting (i.e., 10.6% 
compared with 0.9%). The reason could 

Figure 5: Project cost forecasting results.
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[MAPE %] PD
MC 
Sim Constr Build Comm OFW ESM-1

ESM-
SPI(t)

PD — 10.6 211.6 210.9 4.2 14.4 11.2 11.6

MC Sim 210.6 — 222.2 221.5 26.4 3.8 0.6 1.0

RCF

Constr 11.6 22.2 — 0.8 15.9 26.1 22.9 23.3

Build 10.9 21.5 20.8 — 15.1 25.3 22.1 22.5

Comm 24.2 6.4 215.9 215.1 — 10.2 7.0 7.4

OFW 214.4 23.8 226.1 225.3 210.2 — 23.2 22.8

EVM
ESM-1 211.2 20.6 222.9 222.1 27.0 3.2 — 0.4

ESM-
SPI(t)

211.6 21.0 223.3 222.5 27.4 2.8 20.4 —

Table 7: Difference in accuracy for the considered time forecasting approaches.
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clearly showed the highest accuracy for 
both dimensions. Traditionally, RCF 
was introduced to improve the accuracy 
of cost forecasts and was only applied in 
this context (Flyvbjerg, 2006; Flyvbjerg 
& Cowi, 2004). Indeed, our study indi-
cates that the technique succeeds in the 
cost objective, as the BAC (i.e., inside 
view) and even the periodically updat-
ing EVM methods are surpassed in 
accuracy. On the other hand, RCF has 
not been applied to time forecasting 
up to now. Nevertheless, the technique 
surpasses all other methods for the 
time dimension in our study. Further-
more, compared to cost forecasting, a 
strongly similar accuracy improvement 
of the RCF approach, with respect to 
both the baseline estimate (i.e., PD) 
and the EVM time forecasting meth-
ods could be observed. Specifically, 
the baseline estimate improvement is 
only 2.5% smaller for time forecasting 
(MAPE reduction of 14.4% for PD with 
respect to 16.9% for BAC), and for the 
best EVM forecasting method (i.e., ESM-
SPI(t) for time and EAC-CPI for cost in 
this case), the difference even remains 
limited to 1% (MAPE reduction of 2.8% 
for ESM-SPI(t) with respect to 3.8% for 
EAC-CPI). Therefore, our results sug-
gest that the RCF approach could just as 

The TP1 forecast value for ESM-SPI(t) 
(see Table 4) is not included in Figure 6 
because of the excessive deviation from 
the eventual outcome, just as for EAC-
CPI in Figure 5. The performance-based 
EVM forecasts (i.e., ESM-SPI(t) and EAC-
CPI) thus show a far greater instability 
than their counterparts, with a PF 5 1.

Comparing Cost and 
Time Forecasting
The baseline estimates for cost and time 
forecasting exhibit a very comparable 
precision, although the PD is slightly 
less accurate than the BAC (MAPE of 
22% compared with 19.9%). On the other 
hand, Monte Carlo simulation improves 
the forecasting accuracy for time to a 
far greater extent than for cost (MAPE 
reduction of 10.6% compared with 0.9%). 
The reasons for this were already given 
in previous subsections. Of course, these 
reasons are project-specific, and there-
fore, the supremacy of Monte Carlo 
simulation for time with respect to cost 
should not be generalized.

In this section, we mainly focus 
on the comparison of the RCF perfor-
mance for cost and time forecasting. 
More specifically, we consider the RCF 
approach based on the reference class 
of in-company projects (OFW), which 

requires the project manager to make 
some assumptions (e.g., for activities 
without precedents).

To completely eliminate human 
judgment and cut directly to the project 
outcomes, RCF should be applied. The 
only concern for this approach regards 
the selection of an adequate reference 
class. Our study indicates that, also 
for time forecasting, a reference class 
should comprise projects that are suffi-
ciently similar to the considered project 
in order to guarantee accurate forecasts. 
Indeed, an increasing similarity level 
of the reference class (i.e., in the order 
Constr, Build, Comm, and OFW) results 
in increasing forecasting accuracy.

Moreover, when applying RCF with 
the most specific reference class of in-
company projects (OFW), both EVM 
methods are outperformed in nearly equal 
measure. This outcome corresponds per-
fectly to that for cost forecasting. This is 
also the case for the comparison between 
RCF and EVM in terms of stability and 
timeliness, as for time forecasting, RCF 
also surpasses EVM. This can be ascer-
tained from Figure 6, which should be 
interpreted in the exact same way as 
Figure 5. The theoretical explanation was 
already provided in the previous subsec-
tion and is therefore not repeated here.
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Figure 6: Project duration forecasting results. 
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of all these forecasting methods dem-
onstrates that the RCF technique is the 
most user-friendly, as it does not require 
a great deal of detailed information 
(such as distributional data about activ-
ity durations for Monte Carlo simula-
tion) or extensive calculations (like the 
periodical forecast updates for EVM).

Moreover, although RCF produces 
pre-project forecasts that remain con-
stant throughout project execution (just 
like baseline estimates and Monte Carlo 
simulation), it surpasses all the tradi-
tional techniques in accuracy, stabil-
ity, and timeliness. The dominance of 
RCF in accuracy is especially remark-
able, as the competing EVM technique 
yields forecasts that are updated dur-
ing project progress. Furthermore, the 
strong performance of RCF occurs for 
both cost and time forecasting, and in 
nearly equal measure. Therefore, our 
study suggests that RCF could have 
the same merits for time forecasting 
as for cost forecasting, for which the 
technique had already been applied 
(Flyvbjerg, 2006; Flyvbjerg & Cowi, 
2004). However, RCF only outperforms 
the other techniques when the degree 
of similarity between the considered 
project and the projects in the refer-
ence class is sufficiently high. More 
concretely, in our case, the reference 
class had to consist of projects from 
the same finishing construction com-
pany. A clear decrease in forecasting 
accuracy could be observed with the 
gradually declining similarity level of 
the reference class.

In our specific case, the qualitative 
reason for the dominance of the outside 
view on project forecasting over the 
traditional inside view could be found 
in the occurrence of a newly identi-
fied type of strategic misinterpretation, 
which suggests that project managers 
in the post-approval phase are inclined 
to overestimate the expected costs and 
durations so that their targets (and 
bonuses) could be achieved more easily.

This article supports the practi-
cal relevance of applying RCF for real-
life projects and also shows how the 

been approved, and therefore, under-
estimating costs and durations would 
not offer advantages. On the contrary, 
it would only force the project manag-
ers to work faster and more cheaply 
in order to reach the set goals and the 
possible bonuses that go with them. 
Consequently, it is plausible and per-
haps even natural that these project 
managers—with their projects already 
approved and assigned to them—would 
rather overestimate the foreseen costs 
and durations (and build in buffers) so 
that their targets—and the correspond-
ing bonuses—could be achieved more 
easily. The exact nature and the effect of 
strategic misinterpretation thus appear 
to depend on the phase the project is in 
when preparing the plan (i.e., produc-
ing the baseline estimates): The preap-
proval phase leads to underestimations, 
whereas the post-approval phases 
causes overestimations. Furthermore, 
the fact that many activities that were 
planned behind a buffer could actually 
be started before their foreseen start 
date not only indicates the absence of 
organizational constraints (e.g., unavail-
ability of a particular team or subcon-
tractor until a certain date), but also 
supports the idea of post-approval stra-
tegic misinterpretation having occurred 
for the considered project. In any event, 
the RCF technique (i.e., outside view) 
can bypass the biasing effects of this 
new type of strategic misinterpretation, 
as our study has shown.

Conclusions
The main objective of this article was to 
support the practical relevance of RCF 
by applying the technique to a real-life 
project and quantitatively evaluating 
it through comparison with the most 
commonly used traditional forecasting 
methods. More specifically, the consid-
ered real-life project is a finishing con-
struction project that was selected from 
the database of Batselier and Vanhoucke 
(2015a). The forecasting techniques with 
which RCF was compared are baseline 
estimates, Monte Carlo simulation, 
and EVM. First, practical application 

well have merit for forecasting project 
duration.

Qualitative Discussion
Previous studies (Flyvbjerg, Holm, & Buhl, 
2002; 2005; Kahneman & Tversky, 1979b; 
Lovallo & Kahneman, 2003; Wachs, 1989, 
1990) have argued that people—and, 
therefore, project managers—generally 
tend to underestimate costs (and dura-
tions) when applying an inside view to 
project forecasting. They identified two 
reasons: optimism bias (i.e., uninten-
tionally seeing future events in a more 
positive light than warranted by actual 
experience) and strategic misinterpreta-
tion (i.e., deliberately and strategically 
making more positive predictions so as 
to give the impression that the com-
petition would be surpassed). However, 
when looking at the baseline estimates 
(i.e., inside view) for the considered 
project and for similar projects within 
the same finishing construction com-
pany (reference class OFW), we observed 
exactly the opposite—namely, a struc-
tural overestimation of costs and dura-
tions. This cannot be explained by the 
existence of an unintended “negativism 
bias” (i.e., seeing future events in a more 
negative light than warranted by actual 
experience), as this would be in contradic-
tion with the usual manifestations of the 
human psyche according to the research 
of Kahneman and Tversky (1979b) and 
Lovallo and Kahneman (2003). In other 
words, negativism bias cannot exist 
alongside positivism bias; they would, by 
definition, be mutually exclusive. There-
fore, strategic misinterpretation must be 
the root of the structural overestimations 
within the considered company.

Note that strategic misinterpreta-
tion, as also presented by Flyvbjerg 
(2006), is traditionally defined for the 
preapproval phase of a project. Project 
managers would benefit from underes-
timating costs and durations by increas-
ing the chance of their project—and 
not that of the competition—would 
be approved (and funded). However, 
all considered projects of the finish-
ing construction company had already 
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practical applicability and utility of RCF, 
but also of many other project manage-
ment techniques.
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