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OVERVIEW ARTICLE

r   A B S T R A C T 

The purpose of this paper is to give an overview on the existing literature and recent developments on the research on Schedule Risk 

Analysis (SRA) in Project Management (PM) to measure the sensitivity of activities and resources in the project network. SRA is a tech-

nique that relies on Monte-Carlo simulation runs to analyze the impact of changes in activity durations and costs on the overall project 

time and cost objectives. First, the paper gives an overview of the most commonly known sensitivity metrics from literature that are 

widely used by PM software tools to measure the time and cost sensitivity of activities as well as sensitivity for project resources. Sec-

ond, the relevance of these metrics in an integrated project control setting is discussed based on some recent research studies. Finally, a 

short discussion on the challenges for future research is given. All sections in this paper are based on research studies done in the past 

for which references will be given throughout the manuscript.
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ject forecasting and control setting. In section 3, the main 
challenges for future research are highlighted and section 4 
draws overall conclusions. 

1. Schedule Risk Analysis 
Schedule Risk Analysis is a Project Management meth-

odology to assess the risk of the baseline schedule and to 
forecast the impact of time and budget deviations on the 
project objectives. It can be easily performed on a computer 
using standard Monte-Carlo simulation runs based on user 
input on the uncertainty in activity durations and/or costs. 
The approach is described in various literature sources (see 
e.g. Hulett (1996)) and consists of a four step procedure that 
is displayed in figure 1 and can be summarized as follows: 

 f Step 1. Baseline schedule: The project baseline schedule consists 
of a timetable for each project activity and plays a central 
role in any project simulation study since it acts as a point of 
reference for all calculations done during the simulation runs 
(step 3). It provides information about the expected time and 
cost of a project and start and finish times of activities, as 
well as the use of the various types of over time resources.  

 f Step 2. Define uncertainty: While the time and cost estimates for 
the baseline schedule assume deterministic values, real project 
progress, however, is flavoured with uncertainty, leading to 
unexpected changes and problematic time and cost overruns. 
This behaviour must be mimicked in a Monte-Carlo simulation 
by defining distributions on the unknown time/cost parameters.  

 f Step 3. Simulation: During the Monte-Carlo simulation runs, 
the stochastic values are generated from the predefined 
distributions of the previous step to reflect the real uncertainty 
in the estimates. In each run, the project has a different duration 
and cost and a different critical path, and the simulation 
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INTRODUCTION 

Integrated Project Management 
and Control is a Project Management 
(PM) concept to refer to the necessary 
integration of various quantitative 
techniques to improve the performance 
of the control process of the project 
during its progress. It requires a sound 
methodology for the construction of 
the project baseline schedule that acts 
as a point of reference for two other 
essential phases in the management 
of a project. One of these phases is 
done prior to the start of the project to 
assess the risk inherently embedded in 
the baseline schedule using a tech-
nique known as Schedule Risk Analysis 
(SRA) (Hulett, 1996). The other phase 

is known as project control and is per-
formed at periodic intervals during the 
project progress using Earned Value 
Management (EVM) (Fleming and 
Koppelman, 2010) or Earned Schedule 
(ES) (Lipke, 2003) calculations (further 
abbreviated as EVM/ES). This inte-
gration between the construction of 
the baseline schedule, the analysis of 
risk using SRA and the project con-
trol phase using EVM/ES is known in 
the literature as Dynamic Scheduling 
(Uyttewaal, 2005; Vanhoucke, 2012) 
and is recently referred to as Integrat-
ed Project Management and Control 
(Vanhoucke, 2014). 

In this paper, the focus lies on the 
relevance and use of the SRA method 

for improving the quality and effi-
ciency of the project control process. 
More specifically, the focus lies on the 
formulas of various metrics to measure 
the time and cost sensitivity of project 
activities and the renewable resources 
used by these activities. Most of the 
work is based on research published in 
academic literature, for which referenc-
es will be given throughout the text. 

The outline of this paper is as 
follows. Section 1 gives an overview of 
the most commonly known sensitivity 
metrics to measure the time and cost 
sensitivity of project activities as well 
as the sensitivity of their renewable 
resources. Section 2 provides a discus-
sion of their use and relevance in a pro-
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FIGURE 1. The 4 step procedure of SRA (Source: Vanhoucke (2012))
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engine stores all possible data in its memory to calculate 
sensitivity metrics after the simulation process is finished. 

 f Step 4. Sensitivity output: The data captured during the 
simulation runs is now ready to be processed, and sensitivity 
metrics on time and cost behaviour for individual activities 
and resources can be calculated. The calculations of these 
metrics are discussed in the next section of this paper. 

The importance of analyzing the risk of a baseline 
schedule comes from the need of any project manager to 
restrict his/her attention to the most influential activities of 
the project that might have the biggest impact on the initial 
time and cost constraints. It enables them to have a better 
management focus and it supports a more accurate response 
during project progress that positively contributes to the 
overall project performance (Vanhoucke, 2010a). 

The metrics 

This section gives an overview of four commonly used 
and well-known sensitivity metrics obtained from a SRA. 
The schedule risk metrics contain relevant information that 
can be used to assess the quality of the risk predictions and 
to monitor and control the performance of a project. This 
paper will use these four metrics for the following three 
purposes: 

 f Time risk analysis: Expected impact of activity 
duration changes on the total project duration 

 f Cost risk analysis: Expected impact of activity 
cost changes on the total project cost 

 f Resource risk analysis: Expected impact of resource 
use disruptions on the total project cost 

It should be noted that this paper has no intention on 
providing an overview on the literature and existing tech-
niques on risk management in projects, but instead only 
provides insights into the use of four well-known SRA met-
rics in a project control setting. Much of the work presented 
in the following subsections dates back to the relatively 
old but still very relevant work from Williams (1992) and 
Williams (1995) who has presented some of the metrics to 
measure criticality in stochastic project networks and has 
provided a classified bibliography of project risk manage-
ment. One metric is proposed in PMBOK (2004). This work 
was presented in previously mentioned references and has 
been used in a SRA validation study (Vanhoucke, 2010b) and 
in a project control efficiency study of (Vanhoucke, 2011) 
for which parts were embedded in the books by Vanhoucke 
(2010a, 2012, 2014). However, this restricted focus on the 
four risk metrics does not mean that no other work has been 
published in the literature. Extensions to other risk metrics 
or more advanced risk analysis methods are available in the 
literature, but will not be discussed in the current paper. A 
short yet incomplete discussion on extensions of the four 
risk metrics used in this paper is given in the “critical view 
on sensitivity measures” section of Vanhoucke (2010a). 

Time 

Schedule Risk Analysis metrics for time risk analysis 
refine the black-and-white view of the critical path (which 
defines that an activity is either critical or not) to a degree of 
criticality/sensitivity as a percentage between 0% and 100%. 
Each metric gives an indication of how sensitive the activ-
ity is towards the final project duration as defined by the 
sensitivity metric. Apart from the sensitivity metric values, 
an SRA sensitivity scan also shows the probability that the 
project reaches a certain deadline, expressed in a cumulative 
project duration graph, which will not be further discussed 
in this paper. The four metrics that are often used for meas-
uring the time sensitivity of project activities are as follows: 

 f Criticality Index (CI): Measures the probability 
that an activity is on the critical path.  

 f Significance Index (SI): Measures the 
relative importance of an activity.  

 f Schedule Sensitivity Index (SSI): Measures the relative 
importance of an activity  taking the CI into account.  

 f Cruciality Index (CRI): Measures the correlation 
between the activity duration and the total 
project duration, in three different ways:  

 f CRI(r): Pearson’s product-moment correlation coefficient. 

 f CRI(ρ): Spearman’s rank correlation coefficient.  

 f CRI(τ): Kendall’s tau rank correlation coefficient. 

Cost 

In many practical settings, uncertainty in activity du-
rations also has an influence on the (variable) cost of the 
activity. Unlike the time sensitivity metrics CI, SI and SSI, 
the cost sensitivity cannot be measured by network or crit-
ical path analyses, and hence only the cruciality index can 
be used for measuring this sensitivity. The three versions of 
the Cruciality Index, CRI(r), CRI(ρ) and CRI(τ) are valuable 
alternatives since they measure correlations between two 
variables and do not require a project network. Rather than 
measuring correlations between activity durations and total 
project duration, they now measure the correlation between 
the activity cost and the total project cost (known as Budget 
at Completion (BAC)) based on all data obtained from the 
various runs in the simulation. 

Resources 

Uncertainty in activity durations has an influence on the 
resource costs of the activity. Activities require resources 
and therefore the total activity cost can consist of various 
parts, including the fixed or variable costs for the renew-
able resources connected to these activities. A renewable 
resource is defined as a resource that has a strict limit at 
each period of the project horizon, but it is not consumed by 
activities and hence its limited availability is ‘renewed’ every 
period. A typical example is the use of people but machines, 

cranes and limited space such as dockyards are 
also renewable resources. Rather than measuring 
the total cost sensitivity of an activity as shown 
in the previous section, it is often interesting how 
sensitive each resource is with respect to the global 
project budget. The way resources are connected 
to activities and how their costs are calculated 
might differ from project to project, but a general 
overview is given in the resource chapter of Van-
houcke’s book (2012). Recently, an overview of past 
experiences on the use and importance of renew-
able resource scheduling on real data is given in a 
paper published in the journal of Modern Project 
Management (Vanhoucke, 2013). In this paper, we 
will not discuss these detailed issues any further 
as they do not add fundamental insights to the 
resource sensitivity metrics presented here. Similar 
to the general activity cost, the resource cost sen-
sitivity can be measured by the three versions of 
the Cruciality Index, CRI(r), CRI(ρ) and CRI(τ), but 
they will now be calculated for each type of renew-
able resource rather than for each project activity. 

The formulas 

Each sensitivity metric is given as a value 
bounded between two extremes (0 or 1 for the SI, 
CI and SSI and -1 and +1 for the CRI) for each pro-
ject activity or resource, obtained after the Mon-
te-Carlo runs of a simulation engine available in 
software tools. The simplicity of such tools results 
in an intensive use by project managers, often with-
out much knowledge of the underlying technique 
and the formulas of these metrics. However, it is 
my firm belief that some basic knowledge of the 
formulas helps in understanding the difference in 
meaning between each metric. More important 
than the formulas and the calculations however, is 
to understand their relevance and their potential 
use in controlling projects. In the next subsections, 
the formulas of the metrics are shown in detail, 
while a discussion on their relevance for project 
control is made in section 3. 

Figure 2 shows an illustrative SRA report for an 
artificial project made by the ProTrack software 
tool and shows the time and cost sensitivity for all 
project activities (no resources are taken into ac-
count). The project has a serial/parallel value of 50% 

FIGURE 2. Illustrative time/cost schedule risk report for activities of an artificial project of 17 activities (Source: Vanhoucke (2014))
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as measured by the SP indicator1. This indicator measures 
the structure of the network and has a major influence on 
the time sensitivity indices. Up to date, no research has been 
done to test whether this indicator also impacts the accuracy 
of cost sensitivity. It is conjectured by the author that this 
influence will not be detected for cost sensitivity, since cost 
is rarely related to the topological structure of a network. 
This conjecture is confirmed by an empirical study on a set 
of 52 projects in Batselier and Vanhoucke (2014). 

Criticality Index (CI) 

The Criticality Index is probably the most straightfor-
ward and intuitive metric and expands on the concept of the 
criticality of an activity in a project network. The construc-
tion of a project baseline schedule results in a critical path, 
and each project activity is either critical (i.e. it lies on the 
critical path) or not (i.e. it has a positive value for its slack). 
This black-and-white view suffers from simplicity since each 
non-critical activity has the potential to become critical 
once the project is in progress, and therefore, a more refined 
metric could give much more information. Therefore, the 
Criticality Index measures the probability that an activity 
lies on the critical path. It is a simple measure expressed as a 
percentage denoting the likelihood of being critical. 

Although the Criticality Index has been used throughout 
various studies and implemented in many software tools, 
the CI often fails in adequately measuring the project risk. 
The main drawback of the CI is that its focus is restricted to 
measuring probability, which does not necessarily mean that 
high CI activities have a high impact on the total project du-
ration (e.g. think of a very low duration of an activity always 
lying on the critical path, but with a low impact on the total 
project duration due to its negligible duration). 

Significance Index (SI) 

In order to better reflect the relative importance between 
project activities, the Sensitivity Index of a project activity 
has been proposed as an alternative to and an extension of 
the CI, and can be calculated as follows: 

SI = E(ActivityDuration * ProjectDuration) /  
((ActivityDuration + ActivitySlack) * E(ProjectDuration)) 

with E(x) used to denote the expected value of x. The SI 
has been defined as a partial answer to the criticism on the 
CI. Rather than expressing an activity’s criticality by means 
of the probability concept, the SI aims at exposing the signif-
icance of individual activities on the total project duration. 
In some examples, the SI seems to provide more acceptable 
information on the relative importance of activities. Despite 
this observation, there are still examples where counter-in-

1  This indicator is initially proposed as the I2 indicator by Vanhoucke et al. 
(2008) and is later renamed to SP by Vandevoorde and Vanhoucke (2006).

tuitive results are reported and the reader is referred to 
examples and a critical view in Vanhoucke (2010a). 

Schedule Sensitivity Index (SSI) 

The Project Management Body Of Knowledge (PMBOK) 
mentions quantitative risk analysis as one of many risk 
assessment methods, and proposes to combine the activity 
duration and project duration standard deviations (StDevAc-
tivityDuration and StDevProjectDuration) with the Criti-
cality Index. The Schedule Sensitivity Index is calculated as 
follows: 
SSI = (StDevActivityDuration * CI) / StDevProjectDuration 

In the study of Vanhoucke (2010b), the quality of the 4 
metrics for measuring the activity time sensitivity has been 
compared and benchmarked using a simulation study. The 
quality of the metrics has been measured by their ability 
to make a distinction between project activities with a low 
expected impact on the total project duration and activities 
with a high expected impact. The results show that the SSI 
outperforms on average all other metrics for activity time 
risk analysis. To the best of my knowledge, no such infor-
mation based on computational experiments is available for 
activity or resource cost sensitivity metrics. 

Cruciality Index (CRI) 

The cruciality index is somewhat different than the three 
previous metrics and is therefore much more general in its 
use. As previously mentioned, the CI, SI and SSI metrics 
are inherently linked to the project network structure and 
can therefore be used to calculate the impact of changes in 
the duration of activities on the total duration, using the 
concepts of the activity slack and the critical path. The CRI 
simply measures correlations between two variables and 
does not explicitly use the network structure in its calcu-
lations. Therefore, the CRI can measure both the time and 
cost sensitivity of individual activities as well as the cost 
sensitivity of the renewable resources used by the activities. 
Obviously, the variables used by the CRI differ for time ver-
sus cost sensitivity calculations as well as for activity versus 
resource sensitivity calculations. More precisely, the activity 
time sensitivity CRI requires the activity duration and the 
total project duration as input values to calculate correla-
tions. Likewise, the activity cost and resource cost sensitivity 
can be measured by an alternative version of the cruciality 
index where the duration parameters are replaced by the 
cost parameters. Consequently, the cruciality index can be 
calculated as follows: 

CRI = |correlation(ActivityDuration, ProjectDuration)| for 
activity time sensitivity 
CRI = |correlation(ActivityCost, ProjectCost)| for activity 
cost sensitivity 

CRI = |correlation(ResourceCost, ProjectCost)| for resource 
cost sensitivity  

These metrics reflect the relative importance of an activ-
ity in an intuitive way as the portion of uncertainty in the 
outcome variable (total project duration or total project cost) 
that can be explained by the uncertainty in an activity or 
resource. Three versions of this correlation metric are used 
in literature as discussed along the following lines. 

Pearson’s product-moment CRI(r) is a traditional meas-
ure of the degree of linear relationship between two varia-
bles. The correlation is 1 in the case of a clear positive linear 
relationship, -1 in the case of a clear negative linear relation-
ship, and some value in between in all other cases, indicating 
the degree of linear dependence between the activity dura-
tion and the total project duration. The closer the coefficient 
to either -1 or 1, the stronger the correlation between these 
two variables. 

However, the relation between an activity duration and 
the total project duration often follows a non-linear relation. 
Therefore, non-linear correlation metrics such as the Spear-
man rank correlation coefficient or Kendall’s tau metric can 
also be easily calculated on the same data. These two corre-
lation metrics can be computed as follows: 

Spearman’s rank correlation CRI(ρ) (rho) assumes that 
the values for the variables (i.e. activity durations and project 
durations) are converted to ranks, followed by the calcula-
tion of the difference between the ranks of each observation 
on the two variables. The metric is a so-called non-paramet-
ric measure to deal with situations where the strict statis-
tical assumptions of the parametric CRI(r) metric are not 
met. The CRI(ρ) metric has a similar meaning to the CRI(r) 
metric, i.e. −1 ≤ CRI(ρ) ≤ 1. 

Kendall’s tau rank correlation CRI(τ) (tau) index meas-
ures the degree of correspondence between two rankings 
and assesses the significance of this correspondence. This 
nonparametric metric has a similar meaning to the CRI(r) 
metric, i.e. −1 ≤ CRI(τ) ≤ 1. 

2. Relevance 
It goes without saying that any project manager who re-

lies on Monte-Carlo simulations to analyze the project’s risk 
should be careful with the sensitivity information obtained 
from these runs. As previously mentioned, an activity/re-
source time/cost sensitivity scan gives information about the 
potential effect of uncertainty on the final project duration 
or cost, but since all metrics potentially differ in value even 
for the same activity or resource, it is often hard to interpret 
the results and understand their value in a real-life setting. 
Hence, it is important to correctly interpret these values for 
your project, to recognize the weaknesses but also to appre-
ciate and fully exploit their merits for project management 

and control in order to better support decisions for projects 
in progress. 

Pitfalls 

All metrics discussed in this paper are the result of a 
Monte-Carlo simulation which is a well-known and validat-
ed technique but suffers from the garbage-in garbage-out 
problem2. Hence, a clever choice of the input parameters to 
define the distributions on activity durations is key to the 
validity of the obtained values for the metrics (Williams, 
1999). A complete overview of activity duration distributions 
that are often used in the academic literature is outside the 
scope of this paper. Recent research has suggested the use 
of generalized beta distributions (Kuhl et al., 2007), log-
normal distribution (Mohan et al., 2007), a combined beta 
and uniform distribution (Hahn, 2008), a double truncated 
normal distribution (Kotiah and Wallace, 1973) as well as 
the Parkinson distribution with lognormal core (Trietsch et 
al., 2012). 

While the Monte-Carlo simulation technique often pro-
vides accurate and useful results in a research setting per-
formed under a controlled design, simulation results used 
in a real setting might be affected by case-specific settings. 
An illustrative and common example is the use of calendars 
specified in the agenda such that small delays in activity du-
rations might lead to larger project delays in case the delay 
spans a weekend or a holiday period, resulting in bias values 
for the metrics. Another typical example is the occurrence 
of activity constraints (due dates or ready times) that force 
activities to start or finish not earlier or later than a specified 
time, which leads to infeasibilities during the simulation due 
to the violation of some of these constraints. 

Probably a more important pitfall is the lack of incorpo-
rating constraints on resources while using SRA. Indeed, 
most simulation studies are based on a simple baseline 
schedule in which the limited availability of renewable re-
sources is completely ignored. Instead, the simulation mostly 
starts with the generation of an earliest start schedule (ESS) 
for all project activities in which each activity is scheduled 
at its earliest possible starting time, given the logic of the 
project network. However, if some activities are delayed due 
to specific reasons, or due to the unavailability of resources 
at certain moments in time, the concept of the critical path 
sometimes gets a completely new meaning3 and the metrics 
often do not measure exactly what they initially represent. 
As an example, the criticality index will often report zero 
values for many activities since they do not lie in any of the 
simulation runs on the critical path, but instead are shifted 
further in time due to resource constraints. 

2  It should be said that most, if not all, techniques used in management 
suffer from this principle and hence care should be given to the data input 
process. 

3  In case all so-called resource conflicts are resolved by shifting activities 
in time, the longest path is then known as the critical chain and is based on 
the logic of the network as well as on the availability of the resources. 
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Merits 

Despite shortcoming and pitfalls, the simple and elegant 
SRA technique has been proven useful in various settings 
for its ability to improve the forecasting accuracy of project 
outcome variables as well as for taking corrective actions 
more efficiently during project performance measurement 
and control. These merits are discussed along the following 
paragraphs. 

Forecasting 

Traditionally, duration and cost forecasting is done 
using EVM/ES forecasting metrics such as the Estimate At 
Completion metrics EAC (for cost) and EAC(t) (for time). In 
Vandevoorde and Vanhoucke (2006), the time forecasting 
techniques have been split up in three classes, known as the 
Planned Value (Anbari, 2003), the Earned Duration (Ja-
cob, 2003; Jacob and Kane, 2004) and the Earned Schedule 
(Lipke, 2003) methods. Each of these classes can be used 
under various settings according to the assumptions made 
about the unknown future performance of the project (this 
assumption must be made by the project manager and is 
known as the performance factor of the forecasting method). 
The nine different forecasting formulas have been used and 
validated in a simulation study published in Vanhoucke 
and Vandevoorde (2007) and Vanhoucke (2010a). Similar 
formulas exist for cost forecasting, and in Vanhoucke (2014), 
eight different methods have been presented, based on the 
original work of various authors such as Christensen (1993) 
and Zwikael et al. (2000). 

None of these time and cost methods rely on SRA to pre-
dict the future, and to the best of our knowledge, literature 
had to wait until the paper written by Elshaer (2013) before 
the SRA technique had been used and integrated with the 
previously mentioned forecasting methods to improve the 
overall time/cost forecasting accuracy. The integrated fore-
casting system of this author combines the EAC(t) formulas 
with SRA metrics to improve the predictive power of the 
forecasting methods. The author starts with the observation 
of Vanhoucke and Vandevoorde (2007) who have shown that 
the traditional forecasting methods perform much better for 
serial network than for parallel networks. The main reason 
for this observation is that false warning signals caused by 
non-critical activities (which occur more in parallel network 
relative to serial networks) bias the predictions and lead to 
a lower accuracy. However, the SRA metrics show exact-
ly the opposite behaviour, and are much more reliable for 
more parallel structured networks in comparison with the 
networks with a more serial structureVanhoucke (2010a). 
Based on these observations, Elshaer (2013) has combined 
the SRA and EVM/ES techniques into a single integrated 
system, hereby trying to use the best of both techniques 
decreasing the false warning effects caused by the non-crit-
ical activities. In doing so, he proposed a system using the 
four previously mentioned metrics CI, SI, SSI and CRI as 
weights in the original EAC(t) formulas, hereby improving 

the performance of the earned schedule method in predict-
ing the final project’s duration, regardless of the topological 
structure of the project network. 

3.2.2 Project control: corrective actions 

While time and cost forecasting is undoubtedly a crucial 
step in the control of a project in progress, it is mostly 
relevant when it can be used to trigger actions by the pro-
ject manager to bring projects in danger back on track or 
alternatively, to exploit opportunities of projects performing 
better than expected. Consequently, the ultimate goal of 
project control is not performance measuring nor forecast-
ing but taking corrective actions in an efficient and effective 
way to deliver project on time and within budget. 

In a paper written by Vanhoucke (2011), two alternative 
control methods have been proposed. The top-down control 
method is based on EVM/ES project performance data that 
are used as early warning signals and triggers for the need 
for corrective actions. In case the data points indicate a cer-
tain deviation from the expected performance, it should lead 
to a drill-down in the work breakdown structure to search 
for the underlying reasons of this unexpected behaviour. 
To that purpose, a threshold should be set that indicates a 
significant deviation from the desired project performance 
based on manual and/or statistical methods (Colin and 
Vanhoucke, 2014). 

The alternative bottom-up control method is more rele-
vant for the current paper since it relies on SRA data instead 
of EVM/ES data to report variations from expectations that 
trigger actions. In a bottom-up control method using SRA 
metrics, the detection of sensitivity information is crucial 
to steer a project manager’s attention towards the most 
sensitive parts of the project. These highly sensitive activities 
should then be the subject of intensive control since they 
are expected to have an immediate impact on the project 
time/cost objectives. Other less sensitive activities require 
less or no attention during project execution. Consequently, 
the metrics presented in this paper can play a crucial role 
in efficiently taking corrective actions since they define 
thresholds, similar to the EVM/ES top down thresholds, that 
trigger actions once exceeded. The previously mentioned 
outstanding performance of the SSI on projects with a more 
parallel structure has been observed in computational stud-
ies using this bottom-up project control method. 

3. Challenges 
Cost control 

The previously mentioned bottom-up project control 
study has solely focused on the efficiency of the control 
process for monitoring the final duration of the project, and 
no attempt has been done whatsoever to set up a similar 

study for (activity or resource) cost control. A straightfor-
ward extension and therefore future research challenge lies 
in measuring the ability of the cost sensitivity metric CRI 
for project cost control and its potential beneficial effect it 
might have in comparison with the traditional EAC top-
down project control using EVM/ES. While this extension 
might sound like a simple copy-paste study of the time study 
of Vanhoucke (2011), it probably is more complex due to the 
lack of structure in the cost increase of the project compared 
to the strong project network structured link of time fore-
casting and control. Therefore, other drivers than the serial/
parallel (SP) indicator should be found and/or developed to 
measure the behaviour of cost control using SRA. 

Resource constraints 

It has been previously mentioned that very practical 
features such as activity constraints or calendars could 
lead to unreliable or strange results. While it is practically 
impossible and probably undesirable to incorporate every 
case-specific detail in a simulation study, the extension to 
resource-constrained simulation is so crucial and obvious 
that it can no longer be ignored. Resource-constrained 
baseline scheduling has been investigated widely in the 
literature (for an overview, see e.g. Hartmann and Briskorn 
(2010) and Vanhoucke (2012)) and has led to thousands of 
papers with algorithms and methods to construct a resource 
feasible baseline schedule under certain predefined assump-
tions. However, the use of metrics obtained from schedule 
risk analysis is to the best of our knowledge completely void. 

Again, this extension is challenging since the straightfor-
ward use of Monte-Carlo simulations that generate multiple 
runs with resource-feasible schedules is easy to implement, 
but results in biased, unreliable and often meaningless val-
ues for the four indicators mentioned in this paper. 

Big data 

Given the recent evolutions in data science and cloud 
methodologies, the extension to big data analysis is an 
obvious step to take. Certainly when big data is seen as a 
set of methodologies that can now be performed on a large 
amount of data in a reasonable amount of time, this evo-
lution cannot go unnoticed in schedule risk analysis and 
project control. In a recent paper written by Alleman and 
Coonce (2014), an approach to forecast the time and cost of 
projects using analysis of trends, cost and schedule forecasts, 
and Autoregressive Integrated Moving Average (ARIMA) 
algorithms (provided by the R programming system) have 
been proposed as big data meets EVM research presented at 
the ICEAA 2014 Workshop in Denver Colorado (US). Prob-
ably the most promising use of large amounts of data lies in 
the use of data science and artificial intelligence methods 
to analyse historical and/or simulated data to improve the 
accuracy of risk and control methods in PM. While many 
of these techniques are often easy to implement on large 
datasets, the translation of a project management setting 
requires research and testing and is therefore a promising 
future challenge. 

FIGURE 3. An overview of the relevance and challenges of Schedule Risk Analysis metrics in Project Management
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In the recent years, these methods have gradually found 
their way into the project control research. As an example, in 
the study for the research published in Vanhoucke (2010a), 
terabytes of data have been generated using the Flemish 
Supercomputer Center4 before any analysis could be done. 
Other examples of huge statistical data analysis and the use 
of artificial intelligence in project control are, for example, 
the use of statistical methods (Colin and Vanhoucke, 2014) 
for statistical project control, support vector machines for the 
accuracy of EVM/ES forecasting (Wauters and Vanhoucke, 
2014)) and the Kalman filter of project duration predictions 
(Kim and Reinschmidt, 2010). However, in contrast to project 
control research, not much work on the use of big data meth-
odologies in schedule risk analysis has been done. A search 
on studies in project risk management using quantitative 
methods, however, results in various papers that make use 
of techniques such as reference class forecasting (e.g. (Flyvb-
jerg, 2006)), traditional statistical methods (e.g. (Wang and 
Huang, 2000)) or Bayesian statistics (Khodakarami and Abdi, 
2014), and it is therefore conjectured that future research will 
probably extend these methods to big data analysis and artifi-
cial intelligence techniques, hopefully resulting in increased 
knowledge on this interesting topic. 

4. Conclusions 
In this paper, an overview of recent research on schedule 

risk analysis is given using four well-known and easy to use 
time/cost sensitivity metrics. Rather than giving a full over-
view of the literature, the paper focuses on the calculations 
of the metrics (to understand what they exactly mean), on 
their use and relevance for project management and control 
and on the main challenges for future research. An overview 
picture is given in figure 3 and is briefly summarized along 
the following lines. 

Both time and cost sensitivity metrics have been pre-
sented that are widely used by project managers and their 
software tools. While the time sensitivity can be measured 
by well-known metrics such as the CI, SI and SSI, the cost 
sensitivity measurement for activities and resources is re-
stricted to the CRI metric. 

4  More information on this Flemish Supercomputer Center (VSC, Flemish = 
Vlaams) is available at http://www.ugent.be/hpc/en.

Moreover, the paper refers to studies in which the four 
sensitivity metrics have been tested on their usefulness to 
improve the forecasting accuracy of projects in progress, 
as well as to efficiently control projects using the so-called 
bottom-up method. In doing so, it has been shown that 
simple metrics are able to act as identifiers for sensitive parts 
in projects, and their distinctive power between insensitive 
and sensitive activities enables the project manager to more 
efficiently control projects in progress. From some of the re-
search mentioned in the paper, it is known that these metrics 
can be best used for projects with a structure that resembles 
a parallel structure than a serial structure. Moreover, the 
best performing metric is currently known as the Schedule 
Sensitivity Index and is praised for its high discriminating 
between low and high sensitivity for project networks com-
pared to the others. In a recent study in 2013, the combined 
use of EVM/ES and SRA metrics has led to an integrated 
approach which outperforms all separate approaches on the 
forecasting accuracy. 

Strengths and weaknesses of the use of these metrics 
are described and future research avenues are highlighted 
as major challenges for academics to further improve the 
current state of knowledge in this domain. The main re-
striction of computational experiments on time control has 
been mentioned and a call for more attention on cost control 
should further improve our knowledge on the main drivers of 
accuracy. Moreover, the constraints on resource availabilities 
that is well considered during scheduling but largely ignored 
using SRA is a second possible future research avenue. Fi-
nally, the obvious extension to big data analysis and artificial 
intelligence might lead to new insights and overall improve-
ments. 

As previously mentioned, this paper does not serve as a 
literature overview on project risk management. Instead, it 
should be seen as only a small subpart in project risk man-
agement, and many other excellent papers have been pub-
lished in this domain that use other often more elaborate 
techniques to analyze and assess the inherent risk of projects. 
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